
Avi: A 3D Vision-Language Action Model Architecture
generating Action from Volumetric Inference

Harris Song
University of California, Los Angeles

Long Le ∗

University of pennsylvania

Abstract

We propose Avi, a novel 3D Vision-Language-Action (VLA) architecture that
reframes robotic action generation as a problem of 3D perception and spatial
reasoning, rather than low-level policy learning. While existing VLA models
primarily operate on 2D visual inputs and are trained end-to-end on task-specific
action policies, Avi leverages 3D point clouds and language-grounded scene un-
derstanding to compute actions through classical geometric transformations. Most
notably, Avi does not train on previous action tokens, rather, we build upon
a 3D Multi-modal Large Language Model (MLLM) to generate the next point
cloud and explicitly calculate the actions through classical transformations. This
approach enables generalizable behaviors that are robust to occlusions, camera
pose variations, and changes in viewpoint. By treating the robotic decision-making
process as a structured reasoning task over 3D representations, Avi bridges the gap
between high-level language instructions and low-level actuation without requiring
opaque policy learning. Our preliminary results highlight the potential of 3D
vision-language reasoning as a foundation for scalable, robust robotic systems.
Check it out at avi-3drobot.github.io.

1 Introduction

Figure 1: The left image represents the starting position of the scene. The green voxels represent the
predicted next time stamp. The right image represents the end time stamp, and the series of images in
between indicate the rollout.

Vision-Language-Action (VLA) models have recently gained significant attention in the robotics and
machine learning communities Black et al., Team et al. [2025]. While these models have demonstrated
impressive capabilities in connecting high-level natural language instructions with actionable robot
policies, the vast majority of current VLAs operate solely on 2D image inputs Chi et al. [2023],
Li et al. [2025b], Black et al.. This reliance on 2D perception imposes fundamental limitations:
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Figure 2: Comparison against related work. (1) describes Shape LLM Omni. (2) describes our work,
Avi. (3) describes the Unified Video Action Model. (4) describes Robot 4D Generation. (5) describes
3D Foundation Policy, FP3.

reasoning about depth, object geometry, and fine-grained spatial relations becomes indirect and often
error-prone.

There are other novel Vision-Language Action models that infer based on other sources, such as
implicitly 3D Point Clouds Yang et al. [2025], Hou et al. [2025], but they treat the robotics problem
as an end-to-end action generation problem and implicitly assume that the model is generating action
tokens in a scene and robot-specific setup, decreasing the reproducibility of these results.

In this work, we propose to move beyond both the 2D perception and action-based paradigm by
training a VLA model that natively operates on 3D representations, specifically point clouds. Our
approach is built upon ShapeLLM-Omni, a 3D Multi-Modal Language Model (3D MMLM), which
we finetune to condition on both natural language commands and a 3D point cloud of the scene. Ye
et al. [2025] Rather than directly outputting low-level joint actions, the model predicts a delta point
cloud that represents the desired post-condition of the manipulated object(s). Robot joint actions are
then derived through traditional inverse kinematics, aligning the end-effector to the predicted “after”
state of the point cloud.

In summary, we present two main contributions:

1. AVI (Action from Volumetric Inference): a novel architecture that integrates a 3D Multi-
Modal Language Model to infer actions through volumetric reasoning, rather than directly
generating action tokens. More importantly, our architecture doesn’t require training on
previous action tokens, but rather, only previous depth maps. This approach shifts the
focus from language-to-action to language-to-geometry, enabling richer spatial grounding.

2. Location Quantization for 3D MLLMs: a general technique for discretizing spatial
information that allows pretrained 3D MLLMs to generalize at the object level rather than
at the scene level. Current state-of-the-art 3D MLLMs, specifically ShapeLLM-Omni Ye
et al. [2025], are built on training assets with online 3D Models rather than entire scene
generation. Developing a simple location quantization technique helps us overcome this
technical barrier while demonstrating the effectiveness of our architecture.

2 Related Work

Our work lies at the intersection of two separate trends. The first one is in robotics, where the increase
in large robotics datasets such as Droid, Open X Embodiment has led to the development of many
novel architectures Khazatsky et al. [2024], Collaboration et al. [2023].

The second trend is within computer vision, where there is now a strong emphasis towards understand-
ing the 3D Space. 3D Reconstruction techniques like NeRF and Gaussian Splatting are capable of
learning camera parameters for 3D spatial representation. In addition, image encoders are capable of
deriving semantic information, and nowadays, are capable of deriving enough semantic information
for reconstruction in the 3D Space.

2.1 Understanding the Robotics Policy Trend

There are two additional trends in the robotics space to analyze. The first trend is that most robotics
architectures are based on training action tokens. The second robotics-based trend involves inject-
ing signals into visual components, such as through an image encoder that can extract semantic
information.
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Action Generation We usually dictate these problems as a At−n...At−1 → At Zhao et al. [2023],
Torabi et al. [2018]. These prior Vision-Language-Action (VLA) methods directly predict robot-
specific action tokens, trained to mimic collected demonstrations. For example, PerAct Shridhar
et al. [2022], CLIPort Shridhar et al. [2021], and Transporter Networks Zeng et al. [2021] couple
visual perception with learned policies tailored to specific robot morphologies. Similarly, Unified
Video Action Black et al. and related works integrate video-based action representations, but remain
dependent on large-scale, robot-specific data.

2D Image Pretraining A significant line of research leverages 2D vision pretraining for robotics.
We treat this as a {At−n, It−n}...{At−1, It−1} → At Yen-Chen et al. Yen-Chen et al. [2020]
demonstrated transfer learning in manipulation policies by reusing COCO-pretrained backbones.
Radosavovic et al. Radosavovic et al. [2023] applied masked autoencoding to pretrain ViTs on large-
scale 2D data before transferring to robotics. More recent work has focused on scaling such paradigms:
Lift3D Jia et al. [2024] extends 2D representations into implicit depth and point-cloud embeddings,
while 3D-MVP Qian et al. [2024] and FVP Hou et al. [2025] extend multiview pretraining to robotic
manipulation and 4D video, respectively. World-consistent diffusion models Zhang et al. [2025] also
highlight the utility of 2D/temporal video modeling as a precursor to structured 3D reasoning. While
effective, these approaches remain fundamentally limited by their reliance on 2D visual input for
geometry.

More notably, there are a small subset of papers, such as the Unified Video Action Model, that
generate {At, It} Li et al. [2025b]. Their use of image generation through a diffusion policy is
relatively novel, although their policy still depends on a shared latent space with an action diffusion.

2.2 Understanding the Trend of 3D Computer Vision

There are many papers in the 3D Computer Vision space. We discuss a few from the conversion of
2D to 3D space, and then discuss new papers discussing 3D Large Language Models that first use
arbitrary 3D environments, such as game assets for their dataset, then shift to using the real-world 3D
world models as 3D spaces become more wide-spread.

Generating 3D Environments InstantSplat introduces a method to generate implicit 3D represen-
tations of a scene without explicit camera parameters, and is one of the state-of-the-art Gaussian
Splatting papers through it’s speed Fan et al. [2024]. Spatt3r is a zero-shot gaussian splat from
uncalibrated image pairs, generating novel views with one or two images Smart et al. [2024].

Understanding the 3D World Recon++ Qi et al. [2023] pioneered contrastive representation
learning for point clouds. ShapeLLM Qi et al. [2024] builds on Recon++ with ChatGPT-4V generated
prompts and LLaMA backbones, surpassing PointLLM Xu et al. [2024]. JEPA Saito et al. [2025]
introduces predictive joint embedding architectures, while SUGAR Chen et al. [2024] pretrains a
transformer encoder from scratch on a massive dataset of 752.2K single objects and 110.7K multi-
object scenes. Other works explore integrating LMMs with 3D input, such as LLaVA-3D Zhu et al.
[2024], VoxPoser Huang et al. [2023], and PointVLA Li et al. [2025a], which directly inject 3D priors
into vision-language models. These methods highlight the growing consensus that 3D pretraining
provides stronger grounding for manipulation than 2D alone.

2.3 Intersecting Robotics and 3D Computer Vision

At the intersection of 3D perception and policy learning, FP3 Yang et al. [2025] and DP3 focus on
point-cloud-conditioned diffusion policies, pretrained on large robot datasets such as Droid. 3D-VLA
Zhen et al. [2024] and SpatialVLA Qu et al. [2025] extend this direction by predicting volumetric or
depth-infused representations for language-conditioned action. Recent embodied generalist agents
Huang et al. [2024] and Gemini Robotics Team et al. [2025] scale VLA models across tasks, but
remain heavily compute- and data-intensive. Meanwhile, industrial efforts such as Google Robotics
and Nvidia GR00T are developing proprietary foundational VLA systems at scale. These approaches
showcase the trend toward 3D-aware VLA, but most remain tied to action token prediction, which
restricts generality.
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Table 1: Comparison of our approach with related methods in robotic policy learning.

Method Input Mode Core Mechanism 3D Point Clouds? Relies on
Actions?

This Work (Avi) Point Clouds + Language 3D MLLM predicting delta point
clouds + IK

No No

Unified Video-
Action Li et al.
[2025b]

Images + Action Tokens Joint video–action latent modeling No Yes

Diffusion Policy 3D
Ze et al. [2024]

3D point clouds + Action Tokens Diffusion model over actions condi-
tioned on 3D

Uses 3D condition-
ing, outputs actions

Yes

Diffusion Policy Chi
et al. [2023]

Images + Action Tokens Diffusion model over actions condi-
tioned in 2D

Uses 2D condition-
ing, outputs actions

Yes

3D Foundation
Policy Yang et al.
[2025]

Point Clouds + Language + Action
Tokens

Diffusion transformer policy pre-
trained on 3D

No (actions directly) Yes

Comparison to Related Architectures Figure 2 situates our proposed framework in the broader
landscape of vision-language-action models. Panel (1) highlights ShapeLLM-Omni, which serves as
the foundational 3D multi-modal model but was originally trained on single-object assets and thus
struggles with multi-object robotic environments. Ye et al. [2025] Panel (3) illustrates the Unified
Video Action Model, which leverages video-to-action representations but remains limited by the lack
of explicit 3D reasoning. Li et al. [2025b] Panel (4) shows Robot 4D Generation, a video-based
generative approach constrained to temporal 2D/3D fusion without volumetric grounding. Panel
(5) depicts the 3D Foundation Policy (FP3), a diffusion-based method that directly generates robot
actions from point clouds, but does not predict geometric outcomes explicitly.

In contrast, Panel (2) presents Avi, our proposed architecture, which introduces a fundamentally
different perspective: instead of generating actions directly, Avi predicts delta 3D point clouds
conditioned on natural language instructions, and then derives executable robot trajectories via
geometric optimization. This design shifts the paradigm from language-to-action to language-to-
geometry, yielding interpretable, morphology-agnostic behaviors that are robust across embodiments.
The novelty of Avi lies in combining a 3D MLLM backbone with our proposed location quantization
strategy, bridging the gap between large-scale vision-language pretraining and precise, spatially
grounded robotic manipulation.

Summary Prior work in the space spans policy learning in robotics, and the emergence of 3D
computer vision helpfully intersects the policy learning in robotics. Our method diverges shifts
from the current policy learning trends by reframing VLA as language-to-geometry: predicting
3D volumetric transformations instead of action tokens. By contrast, our approach emphasizes a
morphology-agnostic policy: rather than outputting actions, our model predicts transformed 3D
point clouds from which robot-specific trajectories can be computed via inverse kinematics.

3 Method

Our architecture is novel because we take in point clouds, then we output both point clouds and a
valid transformation for the robotic system. We start with a 3D represented point cloud, then iterate
through the Segment Anything encoder to extract relevant objects from our scene, which is denoted
in subsection 3.1. We then describe our location quantization method, which is denoted in subsection
3.2. We then discuss the 3D MLLM that runs inference in subsection 3.3 and describe a classical
transformation strategy to calculate actions.

3.1 Object Segmentation

Formally, we represent each scene as a point cloud

P ⊂ RN×3,
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Figure 3: Overview of our Vision-Language Action Model Avi, a volumetric vision-language system
for robotic action generation. Avi combines stereo reconstruction, 2D segmentation (via Segment
Anything), and a fine-tuned 3D Vision-Language Model (based on Qwen-VL and 3D VQVAE
embeddings) to predict goal-conditioned 3D volumes. We further align these volumes using classical
geometric optimization (ICP) to produce interpretable, spatially grounded actions.

where N denotes the number of sampled points. The first step of our framework is to partition P into
a collection of disjoint subsets, each corresponding to an object in the scene:

P =

K⋃
k=1

Pk, Pi ∩ Pj = ∅ for i ̸= j,

where Pk ⊂ RNk×3 denotes the point cloud of the k-th object, and K is the number of detected
objects.

To compute this decomposition, we apply a segmentation function

gseg : P → {P1, . . . ,PK},

which is instantiated via a pretrained image-based segmentation backbone (e.g., the Segment
Anything Model) followed by geometric lifting into 3D. Each Pk thus inherits both semantic
labels and fine-grained geometric boundaries from the underlying segmentation.

Once segmented, each object Pk is enriched with additional metadata that encodes its spatial
properties. Specifically, we associate a tuple of discrete descriptors

ℓk = (xk, yk, zk, sk),

where (xk, yk, zk) denotes the quantized centroid location of the object and sk its quantized scale, as
introduced in subsection 3.2. These descriptors are converted into location tokens and appended to
the object-level representation.

Finally, both geometric and linguistic modalities are embedded into a shared latent space Z . Let T
denote the natural language instruction and {Pk, ℓk}Kk=1 the segmented object representations. We
define encoders

f3D({Pk, ℓk}Kk=1) ∈ Z, ftext(T ) ∈ Z,

where f3D integrates both raw geometry and location-token metadata. This ensures that the latent
space jointly captures semantic intent from language and structured spatial reasoning from 3D
geometry, enabling the model to reason over objects rather than raw point distributions.

The token sequence z is then passed through the VQ-VAE decoder to reconstruct the voxel grid V̂ ,
which is subsequently converted back into a point cloud P̂ ⊂ RN×3.

3.2 Location Quantization

We maintain the initial token embeddings from the previously trained 3D Multi-Modal Large Lan-
guage Model (3D-MLLM) ShapeLLM-Omni, ensuring compatibility with the pretrained architecture.
To incorporate additional spatial and geometric information, we extend the vocabulary by introducing
dedicated position and scale tokens.
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Specifically, we define three independent position axes: X,Y, Z ∈ {1, 2, . . . , 256}, each discretized
into 256 bins. This introduces a total of 768 new tokens corresponding to positional context. In
addition, we discretize the object scale into S ∈ {1, 2, . . . , 128}, yielding 128 scale tokens. Thus,
the overall vocabulary extension equates 896 additional tokens.

Finally, the extended embedding matrix becomes E′ ∈ R(|V0|+896)×d, where |V0| denotes the size
of the original vocabulary from ShapeLLM-Omni and d is the embedding dimension. The new
embeddings corresponding to the 896 tokens are initialized (e.g., randomly or via scaled normal
initialization), while the pretrained embeddings for the original vocabulary are preserved to retain the
knowledge of the base model.

Figure 4 illustrates the Location Quantization method that is incorporated into both the training and
inference stages of our framework. For every segmented object, we attach a set of quantized location
tokens that encode its spatial context within the 3D environment. Our qualitative ablation studies in
Section 5.1 discusses the necessity. These tokens serve as an additional input modality, enabling the
model to reason not only about the object’s semantic identity but also about its discretized position
and scale relative to the overall scene. This mechanism ensures that spatial information is consistently
represented throughout the training and evaluation process, thereby enhancing the model’s capacity
for grounding and generalization in downstream tasks.

3.3 Multi-Modal Large Language Model

We freeze the pretrained VQ-VAE encoder, where VQ-VAE stands for Vector Quantized Variational
Autoencoder. This encoder maps a voxelized 3D shape V ∈ R64×64×64 into a discrete latent
representation consisting of 8192 tokens: EncoderVQ-VAE(V) → z = [z1, z2, . . . , z8192], zi ∈ C
where C is a learned codebook of latent embeddings.
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Figure 4: The 3D MLLM training stage with the new ex-
tended vocabulary is detailed, along with the discrete tokens
represented between t and t+1. The new Location Quaniza-
tion tokens are detailed, including the Transformation and
Scale Tokens.

At the core of our framework lies a
Multi-Modal Large Language Model
(MMLM), which extends traditional
autoregressive transformers to jointly
reason over 3D geometry and natu-
ral language. Formally, let the model
parameters be denoted by Θ, and de-
fine a sequence of discrete tokens
z = (z1, z2, . . . , zL), where each to-
ken zi may originate from one of three
modalities:

zi ∈ Vtext ∪ V3D ∪ Vloc,

with Vtext the text vocabulary (Qwen-
2.5), V3D the pretrained ShapeLLM-
Omni codebook, and Vloc the ex-
tended set of position and scale tokens
introduced in Section 3.2.

The joint distribution over multimodal
tokens is factorized autoregressively:

pΘ(z) =

L∏
i=1

pΘ(zi | z<i),

allowing the model to condition future
geometric predictions not only on past
geometry tokens, but also on natural language instructions and quantized spatial context. This design
integrates semantic and spatial reasoning into a unified sequence-modeling framework.

Concretely, given an instruction T and scene point cloud P , the encoders ftext and f3D map the
modalities into a shared embedding space Z:

htext = ftext(T ), h3D = f3D(P),
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which are concatenated with location tokens hloc to form the input sequence h0 = [htext, h3D, hloc].
The transformer layers then compute contextualized hidden states h1,h2, . . . ,hL, which are projected
into logits over the extended vocabulary. This formulation generalizes large language models into
a multi-modal setting where both linguistic and geometric reasoning are expressed in the same
discrete token space. Importantly, it enables language-to-geometry generation, in which the model
autoregressively predicts the next 3D volumetric state P̂t+1 conditioned on the current state Pt and
prompt T , thereby bridging semantic instructions with spatial manipulation outcomes.

3.4 Transformation Calculation

Given a prompt and current scene point cloud Pt, we generate a next point cloud prediction P̂t+1 such
that: P̂t+1 ≈ Pt +∆P where ∆P represents the learned spatial change conditioned on the prompt.
We then compute the Iterative Closest Point (ICP) transformation, defined as the rigid transformation
(R, t) that minimizes the alignment error:

min
R,t

N∑
i=1

∥Rxi + t− yi∥2

where {xi} are points from the source point cloud and {yi} are their closest points in the target
point cloud, R ∈ SO(3) is a rotation matrix, and t ∈ R3 is a translation vector. The resulting
transformation is then applied to the robot’s end effector position (X,Y, Z), and the updated pose is
executed.

4 Setup and Experimentation

We fine-tune the foundational model on robotics training data using a single NVIDIA A6000 GPU with
48GB of memory, which is sufficient to accommodate the pretrained ShapeLLM-Omni backbone. For
training, we utilize the LIBERO Dataset Liu et al. [2023], which provides diverse task demonstrations
within the Robosuite environment. Each demonstration contains synchronized RGB-D observations
and robot proprioceptive states for a Franka Panda manipulator.

Figure 5: The demonstration expert roll-
outs provided by LIBERO Goal.

In our experiments, we select 50 demonstrations corre-
sponding to the drawer-closing task. Figure 1 illustrates
eighteen sample inference rollouts for this task, where the
robot is required to align its end-effector and successfully
close the drawer.

For segmentation, we employ the Segment Anything
Model (SAM) to isolate individual objects from raw visual
inputs Kirillov et al. [2023]. To maintain stability and
avoid overfitting, the SAM encoder weights are frozen
throughout training, providing consistent object-level fea-
tures while the rest of the model adapts to robotics-specific
tasks.

To regularize training in this limited-data regime, we apply
dropout with a probability of p = 0.05. Fine-tuning is
performed using Low-Rank Adaptation (LoRA) to enable
efficient parameter updates without full model retraining.
Specifically, we unfreeze the last K layers of the atten-
tion mechanism, inserting LoRA adaptation matrices into
the Query (Q), Key (K), and Value (V ) projection layers.
This design allows the model to adapt effectively to ma-
nipulation while retaining the broad multimodal reasoning
capabilities of the pretrained 3D MLLM. To enable effi-
cient fine-tuning, we adopt Low-Rank Adaptation (LoRA)
across the attention layers. We experiment with rank values r ∈ {4, 8, 16, 32, 64} to evaluate the
sensitivity of the model to the adaptation capacity. Following common practice, we set the scaling
factor proportional to the rank, with LoRAα = 2r, ensuring that the effective update magnitude
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Table 2: Location quantization ablation. Token-space resolution is B3; world-space perceived scene
size is R3

eff with Reff = max(B, V/s), using V=64 and (here) s=1.

No LQ LQ (64) LQ (128) LQ (256)
Bins B – 64 128 256
Token-space resolution B3 – 643 1283 2563

VQ-VAE grid V 3 643 643 643 643

Perceived scene size R3
eff (world) 643 643 1283 2563

Gripper LLM Gen. No No Yes Yes
Qualitative obs. See Fig. 6 N/A N/A See Fig. 6

Note. If objects occupy a fraction s<1 of the workspace along an axis, then Reff = max(B, V/s). For example,
with s=0.5 and V=64, V/s=128 so even No LQ attains 1283 world-space detail within the object’s region.

Increasing B refines placement granularity across the workspace.

Figure 6: The Left Images contain the architecture with location quantization, including both the
world scene and the robot. The Right Images include the architecture without location quantization.

grows consistently with model capacity. This design allows us to systematically explore the trade-off
between computational cost (smaller r) and representational flexibility (larger r), providing insights
into how LoRA rank influences fine-grained 3D manipulation performance.

5 Results

Table 3: Mean success rate per policy and
scene (aggregate over twenty rollouts).
Policy Scene 5 Scene 10

ResNet–RNN
Liu et al. [2023]

0.05 ± 0.07 0.45 ± 0.11

ResNet–T Liu
et al. [2023]

0.80 ± 0.09 0.45 ± 0.11

ViT–T Liu et al.
[2023]

0.90 ± 0.07 0.60 ± 0.10

Diffusion Policy
Chi et al. [2023]

0.85 ± 0.08 0.70 ± 0.10

Avi (ours) 0.90 ± 0.07 0.90 ± 0.07

We present preliminary results of our proposed archi-
tecture through Figure 1, Figure 2, Figure 5 and Table
3. Figure 1 illustrates the rollout of the drawer-closing
task across eighteen inference steps. The leftmost panel
depicts the initial state of the scene, while the rightmost
panel shows the final state after execution. Intermediate
frames visualize the predicted voxelized “delta” states
(shown in green), which are progressively aligned with
the ground-truth trajectory. These results demonstrate
that Avi is able to generate semantically consistent and
physically realizable action trajectories conditioned on
natural language instructions.

Figure 5 demonstrates the two demonstrations, where
Panel 1 indicates Scene 10 and Panel 2 indicates Scene
5. Neither the Diffusion Policy nor our policy was changed on the domain shift for Scene 10. Table 3
represents the success rate of the task rolled out twenty times. Notably, the task Scene 10 introduces
various tabletop items that were not present in Scene 5, and highlights the robust nature of the
architecture in more complex environments where the number of objects change, but the task does
not. It is important that more rollouts are planned, and more rollouts per scene will be required to
decrease the variance.

Failure Conditions Figure 1 contains inferences which highlight when there are failure conditions.
For example, the inference sometimes generates points clouds that are out of step and therefore the
classical transformation calculator detailed in subsection 3.4 will calculate incorrect transformations
for the gripper.
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5.1 Ablation Studies

Figure 6 presents a side-by-side comparison of the location quantization; the left
panel illustrates our full architecture with location quantization enabled, while
the right panel shows the same model architecture without this component.

Table 4: Finetuning results across number of observa-
tions and rank r. α is calculated as 2r

# Obs. r = 4 r = 8 r = 16 r = 32 r = 64

1 0.0031 0.00001 0.00001 —- —-
10 0.0091 0.00012 —- —- —-
25 0.00109 0.00019 0.00001 0.00001 —-
50 0.03271 0.00241 0.00003 0.00001 0.00001
100 0.03418 0.00391 0.000071 0.00004 0.00001
200 0.03912 0.00392 0.00312 0.000217 0.00002

With location quantization, the model
leverages discretized spatial embeddings
to ground geometric reasoning, resulting
in more reliable alignment of the gripper
with the target object and more consistent
execution of precision tasks. Precision is
increased, as shown from Table 2, high-
lighting the number of voxels generated
per scene is substantially increased despite
a small increase to the vocabulary.

In addition, generating our results required a large number rank r, The training loss in generating
our current model is highlighted. Note that each example is trained to a hundred epochs, following
the experimental requirements and hardware detailed above. Training for a hundred epochs took
approximately two hours for fifty observations, and the rank size r did not noticeably increase the
training time. Note that although the loss is relatively small, we require a higher precision due to the
VQVAE tokenization strategy in the architecture. We discuss different loss strategies and future work
in Section 6, such as unfreezing the VQVAE and gradient flow.

6 Conclusion

In this work, we introduced Avi, a novel 3D Vision-Language-Action (VLA) architecture that
reframes robotic control as a problem of volumetric reasoning rather than low-level policy generation.
By leveraging ShapeLLM-Omni as a 3D Multi-Modal Language Model and extending it with
location quantization, we enable the model to interpret natural language instructions and predict
goal-conditioned 3D representations of the environment. These predicted volumes are then aligned
through geometric optimization, yielding interpretable and morphology-agnostic actions.

Limitations There are a few limitations for our work. First, we focus on explicitly generating the
next point cloud, but this fails to consider the long-horizon high-level planning that is essential to
current papers in the space. Second, our use of a base auto-regressive transformer model is also of
concern, and was used as a representation of a 3D MLLM capable of semantic understanding and
generation in one model. There is currently promising work by SpatialVerse that are working on
stronger 3D MLLMs capable of entire scene generation SpatialVerse [2025]. Current 3D MLLMs
lack access to large-scale training data, especially when compared to state-of-the-art video generation
methods. As illustrated in Figure 1, this constraint can lead the baseline model to occasionally
generate incorrect frames. At present, we optimize using cross-entropy loss, but additional loss
functions merit exploration. For example, unfreezing the 3D VQVAE could provide richer supervision,
though at the cost of significantly increased computational requirements.

Future Work Future work could include developing a novel diffusion-policy that removes the
quantization between time frames, albeit in the 3D Space. There is current work that actually
does something very similar, albeit they are sidestepping the 3D video generation problem through
combining existing diffusion-based autoregressive video generators Liu et al. [2025]. Future work
could focus on integrating stronger 3D MLLMs, as our proposed location quantization strategy was
developed to address inherent limitations in the current backbone. Beyond architectural improvements,
incorporating 3D diffusion-based generative models presents a promising direction. Diffusion models
may be particularly well-suited for robotics, since their iterative refinement process can be interpreted
as a form of imitation learning, in contrast to the purely autoregressive behavior of Transformer-based
approaches. Recent work, such as Masked Autoregressive (MAR) video generation, demonstrates the
effectiveness of diffusion-style losses in place of cross-entropy, suggesting that similar techniques
could enhance spatial reasoning and long-horizon action generation in 3D VLA systems.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflects the
paper’s contribution and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Yes, we include a section that describes the limitations and further work
described by the authors.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, the paper discloses the steps required to reproduce the experimental
results of the paper.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, the paper will provide open access to the code. The data comes from the
another work, the LIBERO dataset.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Yes, hyperparameters were specified in the Methods sections.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Experimental statistical significance is expected in a final version of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, the paper provides sufficient information on the resources required for
training and inference.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the reviewers have conformed with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, broader effects of this work are discussed in the conclusion.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
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Justification: The paper discusses limitations within the Conclusion, and a limitation includes
the LLM generating incorrect content that should be properly accounted for in the real world.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, proper citations and references to the dataset are used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, new assets introduced in the paper will be released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involved crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes, the paper describes the LLM backbone.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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